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The ar t ic le  expounds the principles of the action of the superh igh-pressure  p res s  descr ibed 
in [1]. Its action reduces to the concentric press ing of pointed par ts  which, with compression,  
fo rm a solid sphere with a high p r e s s u r e  at the center .  Self-hardening of the par ts  of the 
p res s  with compress ion  plays an important role in achieving the effect. 

The possibility, in principle,  of containing as high a p r e s s u r e  as desired in a ma te r i a lo f f in i t e s t r eng th  
has been known for  a long while. The possibil i ty of the existence of a supers t rong vesse l  is evident, for  
example, f rom [2], and consis ts  in the following. Let the mater ia l  of a thin-walled sphere be everywhere  
s t ressed  to the yield point, i.e., at each of its points, the shear  s t r e s s  ~" is equal to the strength. It acts in 
a plane forming an angle of 45 ~ with the radius,  and h e r e  

= (p -- (~) / 2 (1) 

where p and a are  the normal  s t r e s se s  in the sphere and the radial  plane. 

F r o m  the condition of the equilibrium of an element of the vesse l  (a hemispher ical  shell of radius r 
and thickness dr), hatched on Fig. 1, it follows that 

2~rdr(~ = ~(r -t- dr)2p (r -4- dr) - -  ~r~p (r) 

whence 

2(~ = r-ld (pr ~) / dr 

Substituting he re  a from (1), we obtain 

whence, with a constant value of ~- 

@ / d r =  - -  4~ / r (2) 

p (a) = 4"~ ln b / a 

With a --* 0, the p r e s s u r e  is discharged, but only logarithmically,  i.e., weakly. We note that p ~ ~ also 
indicates an infinite density of the energy at the center,  i.e., a fundamentally new example of an infinite cu-  
mulation, that is to say, a static cumulation, not connected with any kind of motion. 

In actuality, the s trength does not remain  constant, but, with compression,  general ly  r ises ;  therefore,  
the d ischarge  of the p r e s s u r e  at the center  can be s t ronger .  Thus, in accordance  with [3], with a p r e s s u r e  
of 25 kbar, the compress ive  s t rength for  steel  increases  by 18 kbar  (from 29 to 47 kbar), while, in acco r -  
dance with [4], for aluminum with p = 0.5E (E is the Young modulus}, it inc reases  by approximately 25 times 
(in spite of the heating-up in the shock wave with which the experiments were made}. 

A schematic  diagram and the design of a superh igh-pressu re  p re s s  are  descr ibed below. Its scheme 
was suggested by the f igure in [1]; an analogous f igure was published previously in [5], but no theory of cu-  
mulation, i.e., principle of action, was given. 

S c h e m e  of  D e v i c e  a n d  I t s  C a l c u l a t i o n  

The device consists  of a sphere  made up of a large number of nar row pyramids ,  not filling it com-  
pletely, but with a mean density K t imes less (Fig. 2a). With the press ing  of such a porous sphere f rom 
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whence, with a small  poros i ty  

without, in the middle of the sphere there  is formed a solid compres -  
sion zone, and the angle at the apex of a pyramid  increases  f rom ee to 
fl (Fig. 2b). 

Let us find the distr ibution of the p r e s s u r e  in the zone of the 
compression.  The dimensions of an element of a pyramid, c~, r, dr, 
go over  into fl, q, dq (Fig. 3); under these c i rcumstances ,  at the base  
of the pyramid  the re  will act the p r e s s u r e  p, and, on the la tera l  face, 
a = p - 2 r .  Let us calculate its dimensions,  mentally loading it f i r s t  with 
the uniform p r e s s u r e  p, and then decreasing t h e  p re s su re  f rom the 
sides by 2T. We obtain 

q~ = taB-V, [i + 2x (l - -  ix) / El (3) 

where E is the Young modulus; # is the Poisson coefficient; 6=p/po 
is the relat ive density (it differs slightly f r o m  the true value of 6, since 
the la tera l  p r e s s u r e  is less  than the radial).  Fur ther ,  

whence 

dq = drS-V, (i--4xF / E) 

q = i (l - -4v~ /  E) ~-~ff (4) 
0 

It is c lear  that (~/~)2=K. Substituting here  fl/~ f r o m  (3) and q 
f rom (4), we obtain 

r 

0 

Replacing ~- in accordance  with (2), we obtain 

r _ r ~ ) ~ :  (5) 

0 

Fur ther ,  we take the dependence of p on 6 in the f o r m  

p = 1/3p 0c0~(83 -- 1) (6) 

The Young modulus E =pc23(1-2  p).  Rounding off # to 1/3 , we 
obtain E =p c 2. With a r i se  in the p ressure ,  p increases ,  as well as 
the veloci ty  of sound c; in this case, c.~ p, i.e., the Young modulus r i ses  
as p3 or, neglecting the smal l  difference of 6 f rom the t rue  compres -  
sion, it can be assumed that 

E = E083 (7) 

where  E 0 is for  an unloaded mater ia l .  

Substituting (6) and (7) into (5), we obtain 

r-.L.- I - -  r = l f  ~- t .q_ 38 dr ] ~.~ 6 ,,'~ ~ -dTr 
0 

The solution of this equation is the exponential distribution of the 
density 6 = A / r  n, where n must sat isfy the equation obtained f rom (8): 

(9) 
(i + n / 3 )  ~ = l / K ( t - n / 3 )  

n .-~ (K -- 1) / 2 (10) 

With K= 1 (a solid sphere), we obtain n= O, i.e., there  is no concentrat ion of the p r e s s u r e  at the cen- 
ter; if K> 1, the p r e s s u r e  at the center  r ises ,  the more  s t rongly the g r e a t e r  the value of K, but the value of 
K is l imited by the s t rength (see below). 
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We d e t e r m i n e  the value of A f r o m  the  condit ion that, at  the s u r f a c e  of the zone  of  continuous c o m p r e s -  
sion, the e l emen t s  of adjacent  p y r a m i d s  a r e  in contact ,  but s t i l l  do not c o m p r e s s  each  other ,  i .e. ,  a (R) = 0 
o r  p(R)= 2"r (It). Subst i tut ing h e r e  p(R)=1/3 E 0 ( A ~ R m - 1 )  and 'r (R) in a c c o r d a n c e  with (2), we obtain 

A = R  ~ / ( l - V 2 n )  

Ro F , ( R I ' ~  - ~] 
p (r) = -g- t . ~  \ r /  (11) 

4 t -- ~1~ n (121 

With a s m a l l  po ros i t y ,  t he se  f o r m u l a s  a s s u m e  the  f o r m  

' t " <  t] (13) --3 / , (K-- l i \ r ]  
T (r) : 1/8 Eo(K - -  I)(R / r) a(K-I)/g (14) 

With r---0, the pressure p and the tangential stress rise infinitely, the more strongly, the greater the 
value of K. We find the dimensions of the zones of high pressure, assuming that the press does not fail, i.e., 
that the rise in the strength outruns the increase in "r. This is probably valid even very close to the center, 
which is argued by the enormous pressure (2 Mbar) attained in the Japanese press. 

From (13) and (14) we obtain 

= t / s  ( K - -  t)(E o § (15) 

We so select K that, at the boundary of the zone of continuous compression, the material will be at 
the yield point, i.e., the pressure p will be equal to the compressive strength a,: p(R)=a.. 

Substituting this equality into (15), and taking into account that v (R)=~,/2, we obtain the maximal per- 
missible porosity 

K - - t  = 4 o , / ( E  o + 3 a , )  0-6) 

Subst i tut ing (16) into (15), as  well  as  the  equal i ty  p0 /a .  = (S/R) 2, w h e r e  Po is the p r e s s u r e  of the liquid 
su r round ing  a p r e s s  of rad ius  S (the gaps be tween the p y r a m i d s  a r e  c losed  to the liquid, i .e . ,  the p r e s s u r e  
P0 does not ac t  in them),  a f t e r  t r a n s f o r m a t i o n ,  we obtain 

r == lg I~-P-~ - -  Eo 4- 3z, 1 Eo + 3p (17) 
lg ~- r z ,  6z, g Eo + 3z, 

(here the loga r i thmic  f o r m  is convenient ,  s ince  r / S  v a r i e s  o v e r  v e r y  wide l imi ts ) .  

The  va lue  of r / S  depends  on four  v a r i a b l e s :  P0, E0, r and p. We fix one of them, se t t ing  p0=10  kbar ,  
i .e . ,  we  a s s u m e  that  the v e s s e l  e m b r a c i n g  the  p r e s s  conta ins  this  p r e s s u r e .  The  dependence  on the r e m a i n -  
ing p a r a m e t e r s  is shown on F ig .  4, on which c u r v e s  1, 2, and 3 r e l a t e  to the  va lues  E0=1000,  2000, and5000 
kbar ;  p = 1 0 0  k b a r  f o r  a ,  and p = 1 0 0 0  k b a r  f o r  b. 

It  can be seen  f r o m  the  f igu re  that  v e r y  high p r e s s u r e s  can be  achieved,  but that  the vo lumes  in which 
they  a r e  r eached  a r e  sma l l  (1 Mbar  is deve loped  with r / S  = 2 . 1 0  -~, i .e. ,  in a p r e s s  with a rad ius  g r e a t e r  
than 100 m m  only with r = 0.02 ram).  T h e r e f o r e ,  the s u r p r i s i n g  p r e s s u r e  of 2 Mbar  supposedly  a t ta ined in 
the J a p a n e s e  p r e s s  is deve loped  only with r/S= 10 -~ o r  r = 1 0  -~ ram. 

With a f ixed value of E 0, a g r e a t e r  s t r eng th  cr. is advantageous ,  which is na tura l ,  but, with s a m e  s t rength ,  
a l ower  va lue  of the modu lus  E 0 is advantageous  (i.e., a l ower  r igidi ty) ,  which was  diff icult  to f o r e s e e .  
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The radius  of the compres s ion  zone R ~  ~0 ;  under  these c i r cums tances ,  the dis t r ibut ions of the p r e s -  
su res  and the other  quanti t ies with r e s p e c t  to r a r e  s i m i l a r  and dif fer  only in the sca l e  with r e s p e c t t o  r,  i .e. ,  
the whole phenomenon is s e l f - s i m i l a r .  

I t  is obvious that the r ea l  num ber  of py ramids  cannot be too great :  in the s cheme  in [1] there  a r e  only 
eight and, in the outer  pa r t  of the sphere,  only six. 

We note that another  kind of s ample  at the center  of the p r e s s  changes the dis tr ibut ion of the p r e s s u r e ,  
and a new calculat ion will  be  requ i red  (which is lacking in the given ar t ic le) .  Without this it can be indicated 
only in o rde r  of magnitude.  

Thus,  f r o m  a m a t e r i a l  of f inite s t rength  it is poss ib le  to make  a device which will develop and contain 
a large,  poss ib ly  an infinite, p r e s s u r e  in a sma l l  volume.  It can be  developed in a s y s t e m  of congruently 
approaching pyramids ,  where  the p r e s s u r e  at the cen te r  is d i scharged  in accordance  with an exponential  
law, and is p robab ly  not l imi ted  b y t h e  s trength.  The question of the phys ica l  l imi ta t ions  on the d i spers ion  
at the center  of the p r e s s  r e m a i n s  open. 
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